ABSTRACT
Microelectromechanical systems (MEMS) represent a growing technology with critical applications across diverse fields. Much of the industrial effort is directed toward replacing conventional technology with MEMS devices to reduce cost, increase functionality, improve reliability, and decrease size and mass
Micro-electro-mechanical systems or MEMS are micron-scale (human hair < 100 microns) devices and tools that can be fabricated in ways similar to integrated circuits and are used in industrial, automotive, defense, life sciences, and consumer applications.
Other examples of real-world MEMS devices are RF components for cell phones, miniature pressure sensors for blood pressure monitoring, DNA detectors on a chip, micro-mirror arrays for portable projectors, as well as inertial sensors for realistic computer gaming joysticks and wireless computer interfaces, etc.
Micro-Electro-Mechanical Systems (MEMS) is the integration of mechanical elements, sensors, actuators, and electronics on a common silicon substrate through micro fabrication technology. While the electronics are fabricated using integrated circuit (IC) process sequences and the micromechanical components are fabricated using compatible "micromachining" processes that selectively etch away parts of the silicon wafer or add new structural layers to form the mechanical and electromechanical devices.
No comments:
Post a Comment